
ApplicaƟon Note: Design of a Device Controller using
Microchip dsPIC33F & the CAN / CANopen Stack

A Guide for the Perplexed

Contents
1. IntroducƟon 2
2. CAN basics 3
3. Object DicƟonary 5
4. Service Data Objects 8
5. Process Data Objects 15
6. Network management 17
7. CAN physical and data link layers in more detail 21
8. Microchip dsPIC33F specifics 25
9. PI control real-Ɵme performance 26
10. CAN / CANopen glossary 27
11. References 29

Emperor Joseph II: “That is too fine for my ears – there are too many notes.”
W. A. Mozart: “There are just as many notes as there should be, your majesty.”

[Perhaps apocryphal.]

© 2019 – Black Oak Engineering 1

1. IntroducƟon

This ApplicaƟon Note details the use of a
Microchip dsPIC33F controller, which implements
a CAN / CANopen communicaƟon stack. The
module itself controls an array of sensiƟve
photonic devices using a PI method. The physics
and operaƟonal details for the photonic devices
have been reported elsewhere. For our purposes
here it suffices to know that there are eight of
them in an array and that their radiance driŌs
considerably due to self-heaƟng. The user
requires 4 ms updates, and there are two other
nodes also being updated at this rate. This is
managed through periodic Sync messages. We
designed a module based on a Microchip
dsPIC33F 16-bit digital signal controller, the
associated Microchip CAN driver chipset, and a
precise high voltage current driver ensemble.
The dsPIC33F is programmed in C, using the new
MPLAB XC IDE.1

This document describes the CAN and CANopen
standards generally for context, and then more
specifically to jusƟfy and document design
decisions for the project. It is important to note

1 Black Oak Engineering is a cerƟfied Design Partner
for Microchip Technology®. We are fully indepen-
dent of that company, and this ApplicaƟon Note was
wriƩen independently and with complete object-
ivity. Any errors or omissions are enƟrely our own.

that one must learn the ground rules well before
aƩaching a custom device to the CAN / CANopen
network. There are expectaƟons to meet. One
may easily miscommunicate or trigger network
fault states through inaƩenƟon to detail.

The general structure of this ApplicaƟon Note is
to start with the basics and then gradually
descend ‘into the weeds.’ There is a glossary at
the end for the numerous acronyms. This
document may also serve as a useful reference
for other CAN / CANopen implementaƟons.
Note, the implementaƟon here strives to be
minimal; it is the least amount of investment
necessary in order to parƟcipate on the network.
As always, there are tradeoffs. As a general rule,
we try to keep abstracƟon and generality to a
minimum for a given applicaƟon. This is
somewhat different from the Microchip
ApplicaƟon Notes, which are quite well wriƩen
but serve a somewhat different purpose. Since
our primary goal is to get the customer’s
applicaƟon running quickly and reliably, we tend
to keep data structures and algorithms as simple
as possible. This also minimizes bugs and
unintended consequences, and it facilitates
future improvement.

© 2019 – Black Oak Engineering 2

www.blackoakeng.com
AutomaƟon, controls, electronic design,
instruments & sensors, soŌware.

Brooklyn, NY, USA. Since 2003.
“It just works.”

2. CAN basics

Controller Area Network is an efficient, robust
mulƟdrop serial communicaƟon system that lends
itself well to interfacing sensors, actuators and
motors. It was first developed by Bosch for such
criƟcal automoƟve applicaƟons as AnƟlock Brake
Systems. It is now also widely used in medical
instrumentaƟon, aviaƟon, roboƟcs, military
systems, and industrial automaƟon. CAN is highly
noise immune and it minimizes the cost of the
physical transmission line. It does not require a
Master, but effecƟvely the host node oŌen
assumes this role, especially when using
CANopen. In the present case the host is the
customer control staƟon, which is running
Matlab / Simulink.

Some salient features of CAN generally:
 The basic CAN message package includes

either an 11 or a 29 bit message ID and
between 0 and 8 data bytes, plus a modest
amount of other packaging bits. This is much
leaner than, say, TCP/IP.

 Messages are all broadcast asynchronously to
the network. In other words, the network is
mulƟ-master or peer-to-peer. Again, this
flatness is restricted under CANopen.

 The basic signal is a differenƟal voltage.
When quiescent the two lines should present
as a +2.5V level, with respect to cable ground.
This is a logic low level. During a logic high
pulse the ‘high’ line will rise to 3.5 - 4.5 V and
the ‘low’ line will fall to 0.5 - 1.5 V, with a 3.0
to 4.0 V differenƟal. This is a necessary
condiƟon. The network will not funcƟon in
the absence of condiƟons close to this.

 Topologically the network is expected to be
linear, with nominal 120 Ω2 terminaƟon
resistors at both ends. Short stubs off of the
line are usually acceptable. If the signals on
one’s network are significantly different from
the nominal states described here, the first
thing to check is the two terminaƟons.

 There is built-in message collision arbitraƟon.
A message with higher priority automaƟcally,
electrically overrides another. Thus, a binary
0 is termed dominant, a binary 1 recessive, by
rough analogy with geneƟcs. The lower the
numerical value of its message ID, the higher
its priority, as a zero will ‘dominate’ the open-
drain bus configuraƟon.

 One sign of poor transmission line quality is
that, when the node makes its first message
(such as a Boot-up CANopen message), the
node repeats itself endlessly. The node is not
necessarily malfuncƟoning. It may be
assuming that its message did not transmit
because another node with higher priority
overrode it. This is a warranted assumpƟon,
although not at all desirable behavior.

 Message idenƟfiers range from index 0 to
1023. Generally speaking, in CAN there are
no Node IDs per se. Rather, each message
has its own idenƟfier, and a node3 responds to

2 120 Ω is the characterisƟc impedance of typical
twisted pair transmission line (especially as used by
RS-485 networks). Some networks require slightly
different values. An electromagneƟc wave traveling
down the transmission line will reflect off of any
impedance mismatch. This manifests itself as
corrupted signal.
3 In this document I use node and device inter-
changeably.

© 2019 – Black Oak Engineering 3

that ID as appropriate. There may thus be any
number of nodes, although 64 is a pracƟcal
limit. In CANopen, however, we specifically
limit the number of nodes to 127, and they

are assigned IDs. Node ID = 0 is reserved for
the CANopen host.

 As a normal, best pracƟce guideline, CAN
networks should be kept idle 50% of the Ɵme.

Figure 2.1 – OSI CommunicaƟon Stack
Figure 2.1 – OSI communicaƟon stack

Figure 2.1 depicts the standard OSI model of a
communicaƟon stack, or ‘reference model’. CAN
bus by itself occupies the Physical and Data Link
layers, while CANopen is one way to occupy the
higher layers. Other high-level protocols include
DeviceNet and SAE J1929 and ARINC 825. It is
noteworthy that CANopen may also be based on
other physical media, including RS485 and
EtherCAT.

CAN Physical and Data Link layers are described in
more detail in secƟon 8. The official CANopen
standard, which is an open standard, is governed
by the CAN in AutomaƟon group, CiA, under their
DS-301 and associated publicaƟons. There is a
large community of pracƟƟoners and hardware
providers. CANopen is an open standard, and it
allows for individual design decisions. CiA is an

acƟve governing oversight commiƩee. The CAN /
CANopen combinaƟon fairly well encompasses
the enƟrety of the OSI Stack. This cannot be said
of, say, the Ethernet + TCP/IP combinaƟon, which
requires a large amount of aŌermarket
proprietary middleware to specialize it to tasks
such as ours. ParƟcularly in the presentaƟon and
applicaƟon layers, CAN/CANopen is designed and
ready-made for automaƟon tasks. It is limited in
bandwidth and node count, but this can oŌen be
easily remedied by running parallel CAN networks.
The 1 Mb/s limit (at minimal cable length) is
problemaƟc for many users. There have been
efforts from Bosch and others to develop a
standard and hardware set with an increased
bandwidth (e.g. FlexRay), but this has not at all
succeeded to the same degree as CAN usage. If

© 2019 – Black Oak Engineering 4

only for automoƟve engineering, regard this as a
maƩer of great interest and probable change.

CAN networks are determinisƟc. A node which
must report a message will conƟnue to aƩempt
transmission unƟl it succeeds. Only nodes with

higher priority may delay this. Under CANopen
there are numerous mechanisms for ‘Heartbeats’
and such conƟnuous self-checking. Every node is
required to monitor network condiƟons and
report faults.

3. Object DicƟonary

The Object DicƟonary (OD) is an important
CANopen concept. It refers to the enƟre public
interface (effecƟvely, the ‘API’) of a device at a
node. We may write Device Parameters to it
(such as a desired output level or velocity-loop
parameters), and the node is expected to read
this and respond appropriately. We may read a
Device Status (such as a revision level code or
temperature).

In this project we structured the Object DicƟonary
as a simple database. In any OD each object
(datum) is idenƟfied uniquely by a 16-bit index
with an 8-bit sub-index. Most objects represent
simple data types, such as 16-bit integers, 32-bit
floats, strings, and so on. Note, this 24-bit address
space exists only in abstracƟon. It is not the same
space as that mapped by a CAN message with its
11-bit base or 29-bit extended address. That
index is generally referred to as the ‘COB-ID’. The
OD index and subindex refer to points in the
abstract Object DicƟonary space. At the risk of
introducing even more abstracƟon and confusion,
it is important to note that the project soŌware
database lists every datum with its own linear
index.

In this project the database easily swelled to over
100 indexed entries. About two-thirds of these

were parameters that need to be exposed to the
user for the applicaƟon. These are either read-
only or read-writes. The other third were
dedicated either to required CANopen communi-
caƟon objects or to the ‘meta-structure’ which
aƩends the device parameters.

For example, say that Index 6004h has five
subindices under it. The subindices contain four
‘objects’: temperature, pressure, humidity, pH.
The 0-th4 subindex will always be the number of
objects following, in this case 4. So this secƟon of
the OD looks like:

Index Subindex Object Type
…
6004h .0 4 unsigned8

.1 Temperature float32

.2 Pressure float32

.3 Humidity float32

.4 pH unsigned16
6104h…

Every device node must maintain a subset of the
total OD space which includes all of the
parameters that pertain to it, and a certain
amount of CANopen communicaƟons overhead.
This ApplicaƟon subset may be quite small, for a

4 If an OD index points to only one object, its
subindex is 0, and the object is addressed as index.0.

© 2019 – Black Oak Engineering 5

solitary temperature sensor, say. A full-blown DC
servo motor controller will typically expose
hundreds of ApplicaƟon parameters, in addiƟon
to the required CANopen overhead.

The 24-bit address space of the OD seemingly
affords room for 224 > 16 million objects, but this is
not really so. For example, only certain ranges
may be used for certain purposes, such as
ApplicaƟon parameters. Moreover, several
ranges have an implicit offset that must be
respected. Every node has a unique Node-ID. In
the example above, the Node-ID is 04h. Thus, if
the network starts placing ApplicaƟon parameters
at 6000h (not uncommon), then we maintain our
node at 6004h, with the necessary subindices.
Other nodes do the same at 6001h, 6002h, and so
forth, with parameters that are appropriate to
them. Only the host requires scope of every
node’s OD.

All Object DicƟonaries are structured thus:

Index Object types
0000h Reserved
0001-
001F

StaƟc data

0020-
003F

Complex data

0040-
005F

Manufacturer specific complex data
types

0060-
007F

Device profile specific staƟc data

0080-
009F

Device profile specific complex data

00A0-
0FFF

Reserved

1000-
1FFF

CommunicaƟon profile area (per CiA
DS-301)

2000-
5FFF

Manufacturer specific profile area

6000-
9FFF

Standardized device profile area (DS-
402 governs servo drives)

A000-
FFFF

Reserved

Table 3.1 - General Object
DicƟonary address space

In the StaƟc Data secƟon CANopen requires that
we explicitly define the data types in order.
Typically Index = 1 defines a Boolean, 2 an 8-bit
integer, 2 a 16-bit integer, etc. Unusual data
types, such as 24-bit integers, follow. While
conceivably the data types and sizes could be
reconfigured here, we have never seen this done.
In the CommunicaƟon profile area every CANopen
device is required to support the following data
structure.

© 2019 – Black Oak Engineering 6

Index SubInde
x

Type (type
index from
StaƟc data
area)

DescripƟon

1000h 0h Unsigned32
(7)

Device type
informaƟon

1001 0 Unsigned8
(5)

Error register

1017 0 Unsigned16
(6)

Heartbeat
Ɵme

1018 IdenƟty
object

0 Unsigned8
(5)

= 4, the
number of
subindex
entries to
follow

1 Unsigned32
(7)

Vendor ID

2 Unsigned32
(7)

Product code

3 Unsigned32
(7)

Revision
number

4 Unsigned32
(7)

Serial number

Table 3.2 – Required CommunicaƟon
Profile parameters

Every device is expected to have a formal Device
Profile published in which parameters parƟcular

to it may be found. This will be a data structure
similar to that in the CommunicaƟon profile,
although it is based typically at index 6000h. Thus
the Device Profile is a data structure that may be
read as part of the device’s Object DicƟonary. It
contains any parameters of interest for the
device. Our present project falls under the
category of CiA 401 V3.0.0: CANopen device
profile for generic I/O modules, and has been set
up accordingly. The Device Profile is expected to
be published in an Electronic Data Sheet (EDS).
The format of the EDS may be in a generic
MicrosoŌ ‘.ini’ type format, or in an XML format.
CiA specifies formats for a wide variety of
industrial devices.

As menƟoned above, although CAN by itself is an
inherently democraƟc, peer-to-peer network,
CANopen tends to enforce a hierarchy, with the
host as client and nodes as servers. Much of the
prescribed CANopen format serves to streamline
communicaƟons, which may otherwise be unruly
and inefficient. Nonetheless, it is permissible and
quite common to enable two nodes to
communicate directly with each other. A typical
example is to have an angular encoder
communicate directly with a servo drive. Again,
CANopen is quite flexible and extensible.
However, liberƟes taken with the standard and
norms, while expedient today, may cause major
reliability problems as hardware and soŌware
changes are made in the future.

Figure 3.1 – OD source code fragment

© 2019 – Black Oak Engineering 7

Figure 3.1 shows a fragment from the project
source code for the Object DicƟonary. The OD
consists of a long series of similar entries. The
database is simply an array of structures. The
array index is of course disƟnct from the OD index
(1000h in the example). We also see the OD
subindex, the #defined data type, a void pointer
for the actual datum in physical memory, the
read-write permission, and a human readable
descriptor (for local database maintenance). The
void pointers are cast as necessary for a wide
variety of data types.

Not implemented in this project, but oŌen
desirable, is a set of upper and lower bounds. If
the CANopen network aƩempts to write an
unacceptable value to an object (assuming it to
have write permission) it is oŌen wise to limit the
possibiliƟes. The OD is the natural place to store
these limits.

Another pracƟce that is worth consideraƟon here
is the linked list. In this common pracƟce, every
entry includes a field which points to the next
entry. All entries are thus linked together in a
chain. This can oŌen be an effecƟve algorithm,
especially for lists that frequently get reordered.
We elected not to do linked lists in this appli-

caƟon, however, as scanning through the linear
database index is much faster. One tool that we
did find highly useful though is to write a MS
Windows / Linux uƟlity program that allows user
friendly ediƟng of the Object DicƟonary, with
addiƟon, deleƟon, and re-indexing. The text
output of this program is simply cut and pasted
into the project source code. This pracƟce also
lends itself well to the requirement that nodes
publish a formal XML Device Profile, as described
above.

Generally speaking, an Object DicƟonary is
expected to support dynamic reprogramming.
This is explained further below, but the idea is
that the host may use Service Data Object (SDO)
messages to reconfigure the node’s OD overall
structure, not just individual entries. This
necessitates a fair amount of abstracƟon and
check mechanisms. The project described herein
supports dynamic reprogramming, although it
imposes some strict constraints. We have never
seen a project where the OD had to be radically
reconfigured dynamically, although by no means
are we suggesƟng that this is excepƟonal.
Dynamic reprogramming does require, without
doubt, a considerable amount of overhead to
support reliably.

4. Service Data Objects

There are two CANopen protocols for interacƟng
with the Object DicƟonary, the Service Data
Object (SDO) and the Process Data Object (PDO),
which we treat in secƟon 5. Again, when using
the CANopen upper layers of the communicaƟon
stack, we lose the democraƟc sense of simple CAN
bus. There is a network host (‘master’), and it
operates in a client-server relaƟonship with the

node devices. Generally speaking, only the host
coordinates SDOs and PDOs, but it is quite
common to have nodes communicaƟng directly
with one another via PDOs.

Note, regardless of whether they are carried by
PDOs or SDOs, data types larger than one byte are
transmiƩed in liƩle-endian fashion. This obtains

© 2019 – Black Oak Engineering 8

only at the byte level for individual data types.
Strings, for example, are transmiƩed first
character first. OD Index addresses are of type
unsigned16, so they are transmiƩed as LSB, MSB.

Using SDOs, any data object of any size in the
device OD may in principle be accessed5. Because
of this flexibility, there is significantly more
communicaƟon overhead. The communicaƟon
transfer must always be confirmed, or else a
system error will result. SDOs are considered
reads when data transfers from device node to
host. Write SDOs transfer from host to node.
SDOs are typically used for device iniƟalizaƟon
and configuraƟon. They usually bear low priority
message IDs (i.e., high numerical value). A
network typically needs at least one SDO in order
to access a node’s OD. It is possible to transmit
lengthy messages via SDOs by means of
‘segmented transfer.’ The alternaƟve is to use
‘expedited’ SDOs, which contain 8 data byes,
whether or not all bytes are uƟlized. This is
elaborated below.

It is inherently inefficient to use SDOs. Say we
want to transfer an angular posiƟon reading from
an encoder (node 1h) to motor controller (node
5h). The host sends out an SDO addressed to
node 1h; 1h sends back its SDO confirming
response; the host sends out an SDO addressed to
node 5h; 5h responds. Even assuming expedited,
non-segmented message content and no bus
errors, this will consume hundreds of bus cycles.

Also, such a system is based on polling from the
host. In many situaƟons, the bus traffic will be

5 In pracƟce, some objects may not be accessible due
to some system constraint. For example, a motor
driver may not allow certain parameters to be
altered while moƟon is occurring.

endlessly repeaƟng the same informaƟon. It is
generally beƩer to have a device programmed to
only transmit when one of its parameters has
changed. We may do this by seƫng up a PDO.

CiA uses curious, somewhat ambiguous
terminology regarding inputs and outputs. A
CANopen device always has two roles:

 The device performs some funcƟon in the real
world. An encoder or a thermometer, for
example, is an input sensor for the control
system at large. A motor or actuator is an
output to the control system.

 It is a node in a communicaƟon network, from
which it receives input and to which it
outputs. From the point of view of the
network, inputs transmogrify into outputs at
some point simply as part of the mechanics of
CANopen.

For the most part, CiA uses ‘input’ and ‘output’ in
the first sense, as in a typical control system.
There are four types of SDO supported:

1. An expedited read of 4 or fewer bytes
2. An expedited write of 4 or fewer bytes
3. A segmented read of >4 bytes
4. A segmented write of >4 bytes

There is an important point to make regarding
COB-IDs. CANopen requires that all messages be
either Broadcast messages (usually from the host),
which go out to everyone, or that they map
uniquely to one and only one node. In the laƩer
case the Node-ID is encoded as an offset in the
COB-ID.

1. An expedited read SDO is iniƟated by the host
transmiƫng this message. This is step 1.

© 2019 – Black Oak Engineering 9

COB-ID 600h + Node-ID
Byte 1 40h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 00h
Byte 6 00h
Byte 7 00h
Byte 8 00h

The device at Node-ID responds with this
message. This is step 2.

COB-ID 580h + Node-ID
Byte 1 42h, 4Fh, 4Bh, 43h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 Data, LSB first
Byte 6
Byte 7
Byte 8

The contents of Byte 1 are detailed in Table 3.1.
An important Object DicƟonary datum here
resides at locaƟon 2111h, the Size Indicator (SZI),
which holds the number of bytes to transfer. This
parameter may opƟonally be used to control
transfers. There is a protocol for using SZI, and
one for not using it. CANopen, again, is rather
flexible. Indeed, it is inherently somewhat
ambiguous how to detect some transfer faults.
This is not a problem as long as the enƟre network
follows the same protocols, but it requires
vigilance to assure this.

2. A segmented read SDO is iniƟated by the host
transmiƫng this request. This is step 1.

COB-ID 600h + Node-ID
Byte 1 40h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB

Byte 4 Subindex
Byte 5 00h
Byte 6 00h
Byte 7 00h
Byte 8 00h

This is the same as an expedited read SDO. Why?
Because we may not know a priori how much data
we are asking for. Only the node knows for sure.

The device at Node-ID responds with this
message. This is step 2.

COB-ID 580h + Node-ID
Byte 1 40h, 41h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 00h, or number of bytes to

transfer, depending upon the
mode used.

Byte 6
Byte 7
Byte 8

Then the host confirms that it is ready for data.
This is sƟll step 2.

COB-ID 600h + Node-ID
Byte 1 60h
Byte 2 00h, all 7 bytes
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Then the device replies with:

COB-ID 580h + Node-ID
Byte 1 See Table 4.1
Byte 2 Data, LSB first
Byte 3
Byte 4

© 2019 – Black Oak Engineering 10

Byte 5
Byte 6
Byte 7
Byte 8

The read SDO Byte 1 commands are:

Step Byte
1

Meaning

1 40h Used by host to iniƟate a read
SDO. Does not include a size
indicaƟon. Used by a node when
replying to host’s iniƟate
command when SZI = 0 and there
are more than 4 bytes to transfer.

41 Used by a node when replying to
a read iniƟate and there are more
than 4 bytes to transfer. Bytes 5-
8 will indicate the number of
bytes the node has to transfer.
Only valid if SZI ≠ 0, otherwise
node uses 40h.

42 Used by a node when replying to
a read command with ≤4 bytes.
Actual number of bytes is not
indicated. Only valid if SZI = 0.

4F Used by a node when replying
with exactly 1 data byte. We use
only Byte 5.
Only valid if SZI ≠ 0, otherwise
node uses 42h.

4B Used by a node when replying
with exactly 2 data bytes. We
use only Bytes 5
(LSB) and 6 (MSB). Only valid if
SZI ≠ 0, otherwise node uses 42h.

43 Used by a node when replying
with exactly 4 data bytes. We use
only Bytes 5 – 8, LSB first. Only
valid if SZI ≠ 0, otherwise node
uses 42h.

2 60h,
70h

Used by host. Second step to
segmented read process always
begins with 60h.
Every Ɵme the node replies with
data, the host toggles between
60h & 70h. If this does not occur,
node will abort with code 80h.

0 Reply from node. Will occur only
if host used 60h in the previous
command and there is more data
to transmit. In this case the host
should send another message
using 70h in Byte 1, 0 in all other
Bytes, to retrieve more data.

1 Reply from node. Will occur only
if host used 60h in the previous
command and this message
contains the last of the data.

10 Reply from node. Will occur only
if host used 70h in the previous
command and there is more data
to transmit. In this case the host
should send another message
using 60h in Byte 1, 00h in all
other Bytes, to retrieve more
data.

11 Reply from node. Will only occur
if host used 70h in the previous
command and this message
contains the last of the data.

3, 5,
7, 9,
B, D

Same as 1h except the number of
bytes not containing data is
specified. Use 3h if last Byte is
empty, 5h if last two Bytes are
empty, etc. Valid only if SZI ≠ 0,
otherwise node will reply with
1h.

13,
15,
17,
19,

Same as 11h except the number
of bytes not containing data is
specified. Use 13h if last Byte is
empty, 15h if last two Bytes are

© 2019 – Black Oak Engineering 11

1B,
1D

empty, etc. Valid only if SZI ≠ 0,
otherwise node will reply with
1h.

Table 4.1 – Read SDO Byte 1 commands

3. An expedited write SDO is iniƟated by the
host transmiƫng this message. This is step 1.

COB-ID 600h + Node-ID
Byte 1 22h, 2F, 2B, 23h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 Data, LSB first
Byte 6
Byte 7
Byte 8

The device at Node-ID responds with this
message. This is step 2.

COB-ID 580h + Node-ID
Byte 1 42h, 4Fh, 4Bh, 43h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 Data, LSB first
Byte 6
Byte 7
Byte 8

4. A segmented write SDO is iniƟated by the
host transmiƫng this request. This is step 1.

COB-ID 600h + Node-ID
Byte 1 20h, see Table 4.2
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB

Byte 4 Subindex
Byte 5 00h, or number of bytes to

transfer, depending upon the
mode used.

Byte 6
Byte 7
Byte 8

The device at Node-ID responds with this
message. This is sƟll step 1.

COB-ID 580h + Node-ID
Byte 1 60h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 00h
Byte 6
Byte 7
Byte 8

Then the host begins transferring data. This is
now step 2.

COB-ID 600h + Node-ID
Byte 1 0h, 1h, 10h, 11h
Byte 2 Data, LSB first
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Then the device replies with:

COB-ID 580h + Node-ID
Byte 1 20h, 30h
Byte 2 NA
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

© 2019 – Black Oak Engineering 12

The write SDO Byte 1 commands are:

Usage Byte
1

Meaning

Host
iniƟates
Write SDO
with >4
data bytes
to send

20h Used by host when
iniƟaƟng a write transfer of
≥4 data bytes. Total
number is not specified.
Node replies with 60h,
confirming that it is ready
to receive data.

21 Used by host when
iniƟaƟng a write transfer of
≥4 data bytes. Total
number of bytes is
indicated with Bytes 5 – 8,
LSB first. Node replies with
60h, confirming that it is
ready. Valid only if SZI ≠ 0,
otherwise use 20h.

Host
iniƟates
Write SDO
with ≤4
data bytes.

22 Used by host when wriƟng
≤4 data bytes. Total
number not indicated.
Node replies with
confirmaƟon 60h.

2F Used by host when wriƟng
exactly 1 byte, held in Byte
5. Node replies with
confirmaƟon 60h. Valid
only if SZI ≠ 0, otherwise
use 22h.

2B Used by host when wriƟng
exactly 2 bytes, held in
Bytes 5 (LSB) and 6
(MSB). Node replies with
confirmaƟon 60h. Valid
only if SZI ≠ 0, otherwise
use 22h.

23 Used by host when wriƟng
exactly 4 bytes, held in
Bytes 5-8, LSB first.

Node replies with
confirmaƟon 60h. Valid
only if SZI ≠ 0, otherwise
use
22h.

Data
transfer
commands

60h Reply from node. 60h only
occurs once during the
iniƟate write process.
AŌerward each
consecuƟve reply to a
message containing data
will toggle
between 20h (which must
be first) and 30h.

20
30

00 Used by host if the node’s
previous reply contained
60h or 30h in Byte 1
and there is sƟll data to
transmit.

1 Used by host if the node’s
previous reply contained
60h or 30h in Byte 1
and this message contains
the last data to transfer.

10 Used by host if the node’s
previous reply contained
20h in Byte 1 and there is
sƟll data to leŌ to transmit.

11 Used by host if the node’s
previous reply contained
20h in Byte 1 and this
message contains the last
data to transfer.

3, 5,
7, 9,
B, D

Same as 1h except the
number of bytes not
containing data is
specified.
Use 3h if last byte is
empty, 5h if last two are
empty, etc. Valid only if
SZI ≠ 0, otherwise 1h.

© 2019 – Black Oak Engineering 13

13,
15,
17,
19,
1B,
1D

Same as 11h except the
number of bytes not
containing data is
specified.
Use 13h if last byte is
empty, 5h if last two are
empty, etc. Valid only if
SZI ≠ 0, otherwise 11h.

Table 4.2 – Write SDO Byte 1 commands

SDO Abort Transfer messages
When an error occurs during an SDO the device
node is required to transmit this Abort Transfer
message:

COB-ID 580h + Node-ID
Byte 1 80h
Byte 2 Object Index, LSB
Byte 3 Object Index, MSB
Byte 4 Subindex
Byte 5 Code from Table 4.3, LSB first
Byte 6
Byte 7
Byte 8

The 4-byte Abort codes are:

Abort
code

DescripƟon

0503
0000h

Toggle bit not alternated

0504
0000

SDO protocol Ɵmed out

0504
0001

Command specifier not valid

0504
0002

Invalid block size, block mode only,
see DS-301

0504
0003

Invalid sequence number, block mode
only, see DS-301

0504 CRC error, block mode only, see DS-

0004 301
0504
0005

Out of memory

0601
0000

Unsupported access to an object

0601
0001

AƩempt to read a write-only object

0601
0002

AƩempt to write a read-only object

0602
0000

Object does not exist in the Object
DicƟonary

0604
0041

Object cannot be mapped to the PDO

0604
0042

The number and length of the objects
to be mapped would exceed the PDO
length

0604
0043

General parameter incompaƟbility
reason

0604
0047

General internal incompaƟbility in the
device

0606
0000

Access failed due to hardware error

0607
0010

Data type does not match, length of
service parameter does not match

0607
0012

Data type does not match, length of
service parameter too high

0607
0013

Data type does not match, length of
service parameter too low

0609
0011

Sub-index does not exist

0609
0030

Value range of parameter exceeded
(only for write access)

0609
0031

Value of parameter wriƩen too high

0609
0032

Value of parameter wriƩen too low

0609
0036

Maximum value is less than minimum
value

0800
0000

General error

0800
0020

Data cannot be transferred or stored
to the applicaƟon

© 2019 – Black Oak Engineering 14

0800
0021

Data cannot be transferred or stored
to the applicaƟon because of local
control

0800
0022

Data cannot be transferred or stored
to the applicaƟon because of present
device state

0800
0023

Object DicƟonary dynamic generaƟon
fails or no OD is present

Table 4.3 – Abort error codes

To repeat, there is some flexibility (and occasional
ambiguity) in implemenƟng SDOs. However
implemented, though, errors are expected to be
detected and reported. The host cannot be led to
believe that it has correct informaƟon when in
fact it does not. A node on a network that throws
frequent error codes may need a review of its
architecture.

5. Process Data Objects

Using the PDO protocol, we transfer only between
0 and 8 bytes of data, and this may be tailored to
suit one’s needs. This is much more streamlined
than SDOs. ConfirmaƟon does not occur. PDOs
may be set up in advance by the host, using SDOs,
or they may simply be coded into the node’s
soŌware.

 It is possible to set up master-less, peer-to-peer
communicaƟon this way, although it is the host’s
responsibility to oversee this and possibly to set it
up dynamically. In general, any node may iniƟate
a PDO, and any other node may receive it. There
are two types of PDO: TPDOs transmit from the
device node to the network. RPDOs receive data
from network to device. In other words, an RPDO
is how a device receives needed data.

There is a strict one-to-one mapping of PDOnode1 to
PDOnode2 (one of which may of course be the host).

Here is an example TPDO from CiA. It is assumed
that both nodes have pre-defined the transmiƩed
data content.

Index SubIdx Type DescripƟon

© 2019 – Black Oak Engineering 15

1A00h TPDO mapping
0 Unsigned8 =4, number of

following map
entries

1 Unsigned32 = 6000 01 08h
(Index 6000,
SubIdx 1, 8 bit)

2 Unsigned32 = 6000 02 08h
(Index 6000,
SubIdx 2, 8 bit)

3 Unsigned32 = 6401 01 10h
(Index 6401,
SubIdx 1, 16 bit)

4 Unsigned32 = 6401 02 10h
(Index 6401,
SubIdx 2, 16 bit)

6000 Process data
field, digital
inputs

0 Unsigned8 =2, number of
following subidx
entries

1 Unsigned8 Image of an 8-bit
digital input,
Din1

2 Unsigned8 Image of an 8-bit
digital input,
Din2

6401 Process data
field, analog
inputs

0 Unsigned8 =2, number of
following subidx
entries

1 Unsigned16 Image of a 16-bit
analog input,
Ain1

2 Unsigned16 Image of a 16-bit
analog input,
Ain2

The actual TPDO looks like this, with a CAN
message packet containing 6 used data bytes, 2 of
which are unused. Recall, there are always 8
available data bytes in a PDO. An RPDO is similar,
although it is framed as a request for data.

COB-ID 280h + Node-ID (typical)
Byte 1 Din1

Byte 2 Din2

Byte 3 Ain1, LSB
Byte 4 Ain1, MSB
Byte 5 Ain2, LSB
Byte 6 Ain2, MSB
Byte 7 Unused
Byte 8 Unused

A TPDO may be set up such that a device issues
one automaƟcally every 50 ms, say, or when a
threshold value has been detected. The host may
issue an RPDO to a device asynchronously
whenever it needs to know a status. Again, the
TPDOs and RPDOs form pairs, and they occupy
unique channels. There is a one-to-one mapping
of node to node.

There are four ways to trigger a PDO:

 Event driven. An input device (eg, sensor) may
be programmed to respond to a measured
parameter change. In such an event it
spontaneously transmits the appropriate pre-
defined TPDO. Generally these TPDOs have a
low numerical value, i.e., high priority, so they
tend to get through the network efficiently.

 Time driven. The input device may be
programmed to issue a TPDO at known Ɵme
intervals.

 Individual Polling. CAN bus by itself supports
remote request frames. Thus a request may
come to any node A from any node B. CiA

© 2019 – Black Oak Engineering 16

deprecates this pracƟce, as it could easily
disrupt CANopen’s determinisƟc addressing
system.

 Synchronized. This is a common method used
in moƟon control applicaƟons.

In the project under discussion herein we included
some simple, ‘hard-coded’ PDOs for ease of test.
Figure 5.1 depicts an RPDO that efficiently writes
four different data types. This is synchronized (by
the host) every 4 ms.

Figure 5.1 – Code example of simple RPDO

© 2019 – Black Oak Engineering 17

6. Network management

CANopen requires that there be a Network
Management (NMT) master. This need not be the
host; any device may be so designated. The NMT
node supervises the bus, and there are a few
different ways it can do so. If it detects a fault
condiƟon it takes some remedial response.
Whether or not it is responsible for NMT, every
device may be expected to parƟcipate in network
self-test rouƟnes. One common test is the
heartbeat message. In this protocol, every device
issues a heartbeat TPDO, even if ordinarily it only
transmits event-driven changes. This is analogous
to a ‘radio check.’

In CANopen we pre-allocate certain COB-ID ranges
for special funcƟons:

Message
type

COB-
ID

Note

NMT 0h Network management,
broadcast

Sync 080 SynchronizaƟon message,
broadcast

Emergency 081-
0FF

Time stamp 100 Broadcast
PDOs 181-

57F
SDOs 581-

67F
NMT error
control

701-
77F

Boot-up 701-
77F

Table 6.3 – Preallocated COB-IDs

Every device needs to operate an internal
Network Management state machine and server

to handle NMT traffic. NMT traffic has the highest
possible network priority. CiA DS-301 refers to
this server as the CommunicaƟon State Machine.
State transiƟons are effected by NMT messages.
Figure 6.1 depicts the CommunicaƟon State
Machine as implemented by our project. All
CANopen projects must implement something
close to this.

© 2019 – Black Oak Engineering 18

Figure 6.1 – Mandatory CommunicaƟon State Machine

All NMT messages have COB-ID 000h, RTR = 0.
They then have Bytes 1 and 2 as follows:

NMT message Byte
1

Byte
2

DescripƟon

Start remote
node

01h Node
ID

Sets state
machine at
Node ID to
OperaƟonal.
Enable all
messages
including PDOs.

Stop remote
node

02 Node
ID

Sets state
machine at
Node ID to
Stopped state.
Disable all
messages

except NMT.
Node
Guarding / Life
Guarding if
used are acƟve.

Pre-operaƟonal
state

80 Node
ID

Sets state
machine to Pre-
operaƟonal. In
this state only
NMT and SDO
messages are
allowed.

Reset node 81 Node
ID

Resets node,
same as a
power cycle.
Node emits
Boot
Up message

© 2019 – Black Oak Engineering 19

Power on
reset

IniƟalizaƟon

Pre-
operaƟonal

Transmit boot
up message

OperaƟonal

Stopped

Reset
communicaƟon

Reset
node

Auto

Auto

Auto

80h
02h

01h

80h

01h

81h

02h

82h

Auto

Reset
communicaƟon

82 Node
ID

Reset state
machine. Node
emits Boot Up
message.

Table 6.4 – NMT messages

As menƟoned, there are several opƟonal ways to
conduct Network Management.

Node Guarding

Node Guarding is a network management rouƟne
in which the NMT Master polls each node. The
node is required to respond with its
communicaƟon state within a specified Ɵme. The
possible responses are as follows. Note, for a
given state, the return value is required to toggle
between the two values. This assures that the
NMT Master that the node is sƟll alive and not
stuck in a loop. If the Node Guarding protocol is
not observed the NMT Master will take correcƟve
acƟon. The polling periodicity is given by the
Guard Time (OD object 100Ch). Response is
expected before the occurrence of the next Guard
Time.

State Machine Return (toggle)
Stopped 04 / 84h
OperaƟonal 05 / 85
Pre-OperaƟonal 7F / FF

Table 6.5 – Node Guard responses

The NMT master Node Guard request has COD-ID
= 700h + Node-ID, RTR = 1. No other data is
transmiƩed. The response from the host is COB-
ID = 700h + Node-ID, and then one byte with the
toggling return value from table 6.3.
Life Guarding

A complement to Node Guarding is Life Guarding.
Here each device monitors to assure that the NMT
master is doing its job. There is an OD object
named Life Time Factor (100Dh). LifeƟme is
defined as the product of Guard Time (object
100Ch) and Life Time Factor. If a node has not
received a Node Guard request within this Ɵme it
should emit a communicaƟon error message.

Heartbeat

Another variaƟon on Node Guarding is the
heartbeat protocol. Any node may be the
designated the periodic heartbeat producer. The
other nodes listen for this and regard it as an error
condiƟon if they do not hear a heartbeat within
the specified Ɵme. The producer heartbeat Ɵme
is OD object 1017h. If this value is 0, that node
will not produce a heartbeat. The consumer
heartbeat Ɵme is OD object 1016h. If this value is
0, that node will not listen for a heartbeat.

The general format for a heartbeat Ɵme (object
1016h) is:

Bits 31-24 Bits 23-16 Bits15-0
Always 00h Producer

Node-ID
Heartbeat Ɵme

A host (Node-ID = 0) heartbeat message is simply
COB-ID = 700h, RTR = 0, Byte 1 = ‘00’. If another
node is the designated producer, then COB-ID is
simply 700h + Node-ID.

Boot-Up

© 2019 – Black Oak Engineering 20

Nodes are required to emit a Boot-Up message
aŌer power up, an NMT communicaƟon reset, or
a soŌware reset. The boot-up message is the
same as a heartbeat:
COB-ID = 700h + Node-ID, RTR = 0, Byte 1 = ‘00’

SYNC messages

SYNC messages are used to simultaneously trigger
events in several nodes on the network. Their
form is simply COB-ID = 80h, RTR = 0, 0 bytes.
Only the host issues SYNCs, and how they are
handled by the nodes is applicaƟon specific.

Emergency messages

Emergency messages are the complement to
SYNCs. They may be issued by any node when it
detects a serious problem. It is issued only once.
The format is:

COB-ID = 80h + Node-ID, RTR = 0,
+ Error Code Bytes

Time Stamps

This is the mechanism for long term
system synchronizaƟon. The message format is:

COB-ID 100h
Byte 1 Time since midnight, ms, LSB first
Byte 2
Byte 3
Byte 4
Byte 5 Current day since 1 Jan 1984, LSB

firstByte 6
Byte 7 Unused
Byte 8 Unused

Time stamps need not be periodic. In general
though, if they are used, nodes will detect if they
have not received a Ɵme stamp within some
specified period, and this will trigger an error
condiƟon.

7. CAN physical and data link layers in more detail

For reference, here are some addiƟonal notes on
general CAN lower level design.

 We typically use twisted pair cable. The
transmission line is typically terminated at
each end with ≈120 Ω. Device connecƟons to
the two lines must be open drain so that the
automaƟc message prioriƟzaƟon may work.

 Maximum bandwidth is 1Mb/s. Cable
distance may extend to ≈40 m at this rate.

There are prescribed lower bandwidths with
corresponding longer distances.

 CommunicaƟon is mulƟ-master. It may be
iniƟated at any node, at any Ɵme.

 The bit waveform is Non-Return to Zero.
There is a bit stuffing requirement to enforce
NRZ.

 The maximum latency of a high priority
message is < 120 μs (@ 1Mb/s).

 In this project we use CAN 2.0B. While
capable of extended, 29 bit messaging we

© 2019 – Black Oak Engineering 21

restrict ourselves to ‘Base frame’ mode, with
11 bit (SID) message idenƟfiers. We may
operate at a bus rate up to 1 Mb/s. CAN 2.0B
is defined by ISO 11898.

There are four data frame types that are common
to all CAN communicaƟon. We give here a brief
overview followed by a more detailed analysis.

 Standard Data Frame. This frame is
generated by a node when it wishes to
transmit data and when it operates in
Standard mode with an 11 bit (SID) idenƟfier.

 Extended Data Frame. This frame builds on
the Standard frame by adding 18 more bits
(the EID) to the idenƟfier.

 Remote Frame. As a peer-to-peer network,
node A may request a data exchange with
node B. Remote frames encode this request.
This is an essenƟal CAN situaƟon. Our module
may be either the A or B node, and it may be
the desƟnaƟon or the source. The desƟnaƟon
node sends a remote frame with an idenƟfier
that matches that of the required data frame.
Recall, in a CAN network, every datum
(object) has a unique address. The data
source node then transmits the appropriate
data frame.

 Error Frame. This is generated by any node
that detects a bus error. It has two fields: an
error flag field and an error delimiter field.

 Overload Frame. Two condiƟons may cause a
node to precipitate this frame.
a. The node detects a dominant (0) bit

during interframe space. This is an illegal
condiƟon.

b. The node is not ready to start recepƟon
of the next message due to some system
constraint. A node may generate up to
two sequenƟal overload frames in order
to delay the start of the next message.

There is also a defined Interframe Space. This
refers to the temporal gap between the end of a
frame of any sort, and the beginning of a Data or
Remote Frame. The CAN standard specifies a hold
duraƟon here.

The Standard Data Frame message package has
this format:

Name Length
, bits

Constraint Field

SOF, Start of
Frame

1

Message ID,
‘COB-ID’ or
SID

11 ArbitraƟon
,
inherently
defines
priority

RTR,
Remote
Transmissio
n Request

1 Dominant
0 usually

IDE,
IdenƟfier
Extension

1 Dominant
0 for
Standard
Frame

Control

Reserved
(Microchip
RB0)

1 Dominant
0

DLC, Data
Length
Code.
Indicates
number of
data bytes.

4 0 – 8 bytes

Data 0 – 64,
as set

Data

© 2019 – Black Oak Engineering 22

by DLC
CRC, Cyclic
Redundancy
Check

15 CRC

CRC
Delimiter

1 Recessive
1

ACK Slot 1 TransmiƩe
r sens
Recessive
1 and any
receiver
can assert
a
Dominant
0

ACK

ACK
Delimiter

1 Recessive
1

EOF, End of
Frame

7 Recessive
1

IFS,
Interframe
Space

3 Recessive
1s. Not
part of
frame per
se, but
required
by CAN.

Table 7.6 – Standard CAN message package

Some secƟons of the frame are referred to as
fields. The ArbitraƟon field, for example, is the
address that inherently arbitrates priority for the
message.

The Extended Data Frame message package has
this format:

Name Length
, bits

Constraint Field

SOF, Start of 1

Frame
Message ID,
‘COB-ID’ or
SID

11 ArbitraƟon
,
inherently
defines
priority

SRR,
SubsƟtute
Remote
Request

1 Dominant
0

IDE,
IdenƟfier
Extension

1 Recessive
for
Extended
Frame

EID,
Extended
IdenƟfier

18

RTR,
Remote
Transmissio
n Request

1 Dominant
0

Control

Reserved
(Microchip
RB1)

1 Dominant
0

Reserved
(Microchip
RB0)

1 Dominant
0

DLC, Data
Length
Code.
Indicates
number of
data bytes.

4 0 – 8 bytes

Data 0 – 64,
as set
by DLC

Data

CRC, Cyclic
Redundancy
Check

15 CRC

CRC
Delimiter

1 Recessive
1

ACK Slot 1 TransmiƩe
r sends
Recessive

ACK

© 2019 – Black Oak Engineering 23

1 and any
receiver
can assert
a
Dominant
0

ACK
Delimiter

1 Recessive
1

EOF, End of
Frame

7 Recessive
1

IFS,
Interframe
Space

3 Recessive
1s. Not
part of
frame per
se, but
required
by CAN.

Table 7.7 – Extended CAN message package

A Remote Frame follows the same format as the
Standard or Extended Frames. However, we set
RTR to recessive 1 and we set DLC to 0. Since
there is no Data exchanged the data field length is
0.

An Error Frame may be generated by any node on
the network that detects a bus error. There is a 6
bit Error Flag field, followed by the Error
Delimiter, which is always 8 recessive 1’s. The
Error Flag field may be:

a. AcƟve. 6 dominant 0’s. This forces all other
nodes to generate Error Echo Flags. This will
result in a series of 6 – 12 dominant 0’s in the
bus.

b. Passive. 6 recessive 1’s. This will not affect
any other nodes. It does signal to the
transmiƩer that the communicaƟon was
unsuccessful.

As a node transmits a message, which it may do at
any Ɵme, it monitors the bus. If it detects that a
more dominant message (one with a lower
numerical ID) then there is a bus collision and it
should stop transmiƫng. In theory however the
highest priority message will punch through. The
node that has detected a collision and has paused
should reaƩempt aŌer some random delay Ɵme.

Drivers & IsolaƟon

While it can lead to latency problems of its own,
galvanic isolaƟon is oŌen recommended in order
to protect the embedded electronics from
undesired current flow paths. In a typical
industrial seƫng, with motors, transients, ground
loops, variable ground potenƟals, etc., signaling
may easily be corrupted. Indeed, it is quite
possible to damage embedded electronics this
way. Just to pick one source, Analog Devices®
makes an excellent line of signal line isolators.

© 2019 – Black Oak Engineering 24

Figure 8.1 – Microchip ECAN architecture

8. Microchip dsPIC33F specifics

The project CAN communicaƟon physical layer is
based on a Microchip dsPIC33F, which has an
‘ECAN’ module. By this, Microchip means that it
has Enhanced CAN capability, over and above
some earlier offerings. Figure 8.1 depicts the
architecture of Microchip ECAN. Some salient
features are:

 Any level of CAN protocol up to 2.0B is
possible. In this project we use Standard
frames and a maximum possible bit rate of 1
Mb/s.

 AutomaƟc response to remote transmission
requests.

 Up to 8 transmit buffers with applicaƟon
specified priority and abort capability. Each
buffer may contain up to eight bytes of data.

 Up to 32 receive buffers. Each buffer may
contain up to eight bytes of data.

 Up to 16 full (SID or EID) acceptance filters.
 3 full acceptance filter masks.

 DeviceNet addressing. This is not used in
current project but useful elsewhere.

The dsPIC33F has six operaƟonal modes vis à vis
the CAN network. Before switching modes there
is typically a constraint in which the ECAN module
waits for an idle bus condiƟon (typically ≥ 11
recessive bits in series). The six modes are:

 IniƟalizaƟon Mode. Transmission and
recepƟon inhibited. Error counters are
cleared and interrupts disabled.
ConfiguraƟon registers are accessible only in
this mode. CAN protocol will not be violated.

 Disable Mode. Transmission and recepƟon
inhibited. ECAN may set the WAKIF interrupt
flag bit due to bus acƟvity. Pending interrupts
remain and error counter holds its value.

 Normal OperaƟon Mode. Ordinary CAN
parƟcipaƟon.

© 2019 – Black Oak Engineering 25

 Listen Only Mode. This effecƟvely disables
CAN funcƟonality, but it is possible to monitor
CAN bus traffic and ascertain the bit rate.

 Listen All Messages Mode. Here we ignore all
errors and receive any message. The data
which are in the message assembly buffer, up
unƟl the occurrence of an error, are copied
into the receive buffer and may be examined
by the CPU.

 Loopback Mode. Here we exercise all CAN
funcƟonality except for the actual physical
CAN bus transmission and recepƟon.

The Protocol Engine assures compliance with CAN
2.0B. The Acceptance Filters examine each
received message to see if it should be transferred
via DMA to the Message Buffer. Upon receipt of a
message into the C1RXD register, the receive DMA
interface generates an interrupt, and this iniƟates
the DMA transfer. When the module wants to
transmit a message, the TX DMA interface
generates an interrupt to start the DMA transfer,
via C1TXD register. In the Message Buffer array,
messages 0-7 can be configured for either
transmit or receive operaƟon. Messages 8-31 are
receive-only.

9. PI control real-Ɵme performance

The applicaƟon requires that we update the eight
analog outputs every 4 ms via a Sync RPDO from
the host. In that RPDO is coded the desired
current level for the eight outputs. Each of the
eight devices responds quite differently and all are
remarkably nonlinear. They are subject to
thermal runaway and self-destrucƟon. Therefore
it is necessary to monitor them in soŌware, using
the numerous 12-bit ADCs available on the
dsPIC33F.

We deemed it advantageous to use floaƟng point
math, as this made calculaƟons more lucid for the
customer, as opposed to crypƟc (albeit more
efficient) fixed point rouƟnes. Even so, we were
able to meet the real-Ɵme constraint. The
dsPIC33F was running on its internal PLL, yielding
40 MPS.

For CAN traffic we set up three DMA receive
buffers and one transmit DMA buffer. This seems
adequate. CAN traffic was assigned the highest

priority interrupt, higher than the ADC and Real-
Ɵme (RTC) mechanism. The analog sample
funcƟons disable other interrupts while they are
execuƟng, and a fair amount of sampling and
processing were found to be necessary. The RTC
interrupt ISR is atomic. It uses a semaphore
mechanism which tolerates an acceptable amount
of jiƩer.

The familiar ProporƟonal + Integral method of
control proved adequate, even for these unstable,
nonlinear devices. A layer of robust ‘meta-
control’ supervises the algorithm. PI coefficients
were kept sub-opƟmal by a large degree, but this
was acceptable in terms of their actual intended
use in the customer process. The coefficient
values were derived from a custom Matlab model.

It is not obvious how one should handle
excepƟons in a CANopen network. In this
instance, many of the self-check measurements
fail briefly, then autoclear. In this applicaƟon,

© 2019 – Black Oak Engineering 26

CANopen is the only pracƟcal way for the user to
interface with our control module. In
development we supported a highly developed
diagnosƟc serial output. This helps immensely,
but is not pracƟcable in final use.

Should transient measurement errors throw
CANopen faults? This is a difficult call. We
elected to support a priority schedule, which is
easily modifiable in firmware. Any excepƟons that

exceed a threshold level get reported back to the
host as CANopen errors.

10. CAN / CANopen glossary

 ARQ – AutomaƟc Repeat Request
 COB – CommunicaƟon Object. This is a basic

CAN data package. Every CAN network allows
1011 = 2048 COBs, each of which may contain
up to 8 bytes of data. Every COB has a unique
ID. This inherently determines the priority of
the COB in the MAC sub-layer.

 COB-ID – ConnecƟon Object IdenƟfier. There
is some ambiguity in this term between
Advanced MoƟon Controls and CiA. AMC
simply defines COB-ID as the 11 bit CAN
address. CiA defines COB-ID as the dedicated
link, or address space or channel, of RPDOM1
in the host to TPDOX1 in device X. A COB-ID
also may contain configuraƟon bits, such as a
PDO enable bit. For the most part we follow
AMC herein.

 CRC – Cyclic Redundancy Check.
 CSDO – Client SDO.
 DLC – Data Length Code. In the basic CAN

message the DLC indicates the number of
data bytes to follow. This field is 4 bits but is
limited between 0 and 8 data bytes. This was
an early Bosch design decision minimize
message throughput Ɵmes.

 ECAN – Microchip terminology for Enhanced
CAN support.

 EDS – Electronic Data Sheet. A document
published by a device manufacturer that
specifies its Device Profile. This is a data
structure that may be read as part of the
device’s Object DicƟonary that contains any
parameters of interest for the device. The
format of the EDS may be in a type of
MicrosoŌ ‘.ini’ form or in XML.

 EID – Extended IdenƟfier, an addiƟonal 18
bits, to total 29 bits in extended mode
addressing.

 LLC – Logical Link Control. A sub-layer of the
Data Link Layer in the CAN stack that gives the
user an interface that is independent of the
underlying MAC layer.

 MAC – Medium Access Control. A sub-layer of
the Data Link Layer in the CAN stack that
controls who gets access to the medium in
order to send a message.

 NMT – Network Management. One of the
service elements of the applicaƟon layer in
the CAN stack. The NMT configures,
iniƟalizes, and handles errors in CAN network.

© 2019 – Black Oak Engineering 27

 Node-ID. In CANopen every device or node is
assigned a unique ID, between 1 – 127.
Node-ID = 0 is reserved for the host.

 OD – Object DicƟonary.
 PDO – Process Data Object.
 Remote COB. A COB whose transmission can

be requested by another device.
 RPDO – Receive PDO.

 SDO – Service Data Object.
 SID – Standard IdenƟfier, 11 bit.
 SSDO – Server SDO.
 SYNC – SynchronizaƟon Object.
 SZI – An Object DicƟonary datum at locaƟon

2111h, the Size Indicator holds the number of
bytes to transfer.

 TPDO – Transmit PDO.

11. References

 Advanced MoƟon Controls, Camarillo,
CA, CANopen CommunicaƟon Reference
Manual.

 CiA DraŌ Standard 301, CANopen
ApplicaƟon Layer and CommunicaƟon
Profile, Version 4.02, February 2002.

 Copley Controls, CANopen
Programmer’s Manual, rev 5, Oct 2008.

 Fosler, Ross M, Microchip Technology,
AN 925: A CANopen Stack for PIC18 ECA
Microcontrollers, 2004.

 Microchip Technology, dsPIC33FJXXXGP
Data Sheet, 2009.

 Microchip Technology, dsPIC33F Family
Reference Manual, SecƟon 21, ECAN,
2007.

 Pfeiffer, Olaf, et al, Embedded
Networking with CAN and CANopen,
Copper Hill Media, 2008.

© 2019 – Black Oak Engineering 28

www.blackoakeng.com
AutomaƟon, controls, electronic design,
instruments & sensors, soŌware.

Brooklyn, NY, USA. Since 2003.
“It just works.”

